DornTorus - „Eine Geometrie für Alles” Seite: 1 2 3 4 5 6 7 8 9 pdf / Original-Text Autor Ich kann es nicht oft genug wiederholen: das DornTorus-Modell ist weder Physik noch Mathematik, und am allerwenigsten ist es Esoterik! Es ist ein reines Gedankenspiel, mit dessen Hilfe grundlegenden physikalischen Objekten und Vorgängen - „Raum”, „Zeit”, „Elementarteilchen”, „Wechselwirkung” - eine „einfache” mathematische Struktur zugeordnet und diese visuell assoziativ verdeutlicht werden soll. Die Umschreibungen in diesen Analog-Bildern sind zwar nicht ganz willkürlich gewählt, aber keinesfalls zwingend. Hauptmotive für die Wahl des Dorntorus sind:• die ausgesprochene Einfachheit und ontologische Sparsamkeit („Ockhams Rasiermesser”): • Enthaltensein eines ganzen Satzes unterschiedlicher Elementarteilchen in einer einzigen Entität, hervorgegangen aus nur einem Prinzip • die überragende Symmetrie, deshalb gute bildliche Vorstellbarkeit und • die relativ einfache Programmierung der Grafiken und Animationen. Wichtig bei der Wahl war auch die Möglichkeit, eine • Alternative zur engrammhaften Bedeutung des dreidimensionalen (mehr oder weniger) statischen linearen Raumes zu bieten: • einen dynamischen, nichtlinearen Raum, der unendlich viele oder - anders interpretiert - gar keine Dimensionen hat. Weitere nützliche Eigenschaften des DornTorus-Raumes sind: • die dynamische Selbstähnlichkeit - dadurch Selbstmetrisierbarkeit • die schnell zunehmende Entwicklung komplexer Strukturen und Muster • das Potenzial zum Abgreifen dimensionsloser Konstanten • die Nichtlokalität aller Ereignisse • die intrinsischen Eigenschaften der Nichtlinearität, die linearen Räumen erst trickreich hinzugefügt werden müssen • der Verzicht auf ein Kontinuum - im Gegenzug Gewinn anschaulicher Bilder von Quantelungen • Verzichtbarkeit auf künstlich eingeführte „Felder”, denn der DornTorus-Raum bietet • die Möglichkeit der Zurückführung abstrakter Begriffe wie Kraft und Energie auf nachvollziehbare dynamische Vorgänge: • durch Ortsveränderung aufgrund von dynamischen Wechselwirkungen und geometrischen Überlagerungen wird die Kraft definiert und nicht umgekehrt • manche fundamentale Rätsel lösen sich in Wohlgefallen auf, allen voran die Frage nach der Zeit • u.v.m. .... Metaphysik • es gibt keinen leeren Raum, in dem physikalisches Geschehen stattfindet. Komplexe dynamische Vorgänge generieren den Raum. Stillstand (Statik) kommt nicht vor • es gibt keine „Dimensionen”, weder Euklidischen noch Nichteuklidischen Raum, ebenso wenig Vektorräume, auch nicht im Sinne des abstrahierenden Hilbert-Raumes • Zeit ist keine grundlegende physikalische Größe, sie ist im Modell zwar enthalten und identifizierbar, aber redundant, zurückführbar auf andere, fundamentalere Größen • es gibt, ohne dass ein Bewusstsein sie beschreibt, keine einzelnen, unabhängigen „physikalischen Objekte”, insbesondere keine isolierten oder isolierbaren Teilchen • was als „Teilchen” imponiert, ist lediglich die „lokale” Eigenschaft einer viel mehr umfassenden Entität an einem ganz bestimmten „Ort” im DornTorus-Raum, m.a.W.: • was hier als Nukleon beschrieben wird, ist dort ein Elektron, weiter entfernt ein Photon, anderswo wiederum „gleichzeitig” ein ganz anderes „Teilchen” derselben Entität • alle Entitäten, d.h. auch alle Teilchen, sind an jedem Ort mit allen anderen Entitäten/Teilchen verbunden (verknüpft, verschränkt) und „wechselwirken” miteinander • wechselwirken heißt ineinandergreifen, dynamisch verschachtelt sein, sich permanent gegenseitig messen und vergleichen, sich deterministisch in ein Ganzes einordnen • das Universum ist ein geordnetes, mathematisch beschreibbares Geflecht, ein gesetzmäßig aufgebautes Muster, die bloße Struktur einer „apriorischen” Mathematik • ein Bewusstsein greift mittels seiner Sinnesorgane nur ganz bestimmte kleine Teile dieses abstrakten mathematischen Musters aus dem Gesamtgeschehen heraus • alle beschriebenen Eigenschaften des Wahrgenommenen sind durch (subjektive) mentale Verarbeitung erzeugte (konstruierte) Interpretationen des Wahrnehmenden für Physiker: Um mit Hilfe des DornTorus-Modells dann doch Berechnungen anzustellen und Voraussagen zu treffen, bedarf es, wie bei allen anderen Modellen und Theorien auch, der Anwendung gängiger aber vor allem auch neu zu entwickelnder (notfalls auch disruptiver) spezieller mathematischer Methoden. Ohne geht es nicht! Ohne Mathematik verbleibt das Fundament und das Wesen alles Existierenden im Dunkeln. Dennoch kann jedes noch so ausgeklügelte Modell der Natur nur bloße Krücke sein, mit der wir um die nie erreich- und vorstellbare „letzte” Wahrheit humpeln, nur um die kurzen Augenblicke vermeintlich naher Begegnung mit ihr zu genießen. Dessen sollten wir uns bewusst bleiben, aber die eine Erkenntnis - Kernaussage der Betrachtungen - ist immerhin schon erreicht: die Natur ist mathematisch Die Natur ist zwar mathematisch, aber unsere Mathematik ist nicht fundamental Mathematik ist nicht wirklich fundamental in dem Sinne, dass man mit ihrer Hilfe die fundamentalen Gesetze unseres Universums beschreiben können sollte. Zwar bin ich überzeugter Anhänger von 'mathematical universe'-Ideen - andere Welt-Erklärungen habe ich längst verworfen für mich -, sehe aber sehr wohl die Schwächen in den Argumenten ihrer Vertreter. Trotz - vermeintlich - maximal abstrahierendem und idealisierendem Formalismus der mathematischen Fundamentalisten fußt die gesamte Mathematik auf Annahmen und Vorstellungen von Raum, Zeit und „Objekten”, die allesamt menschlichen Sinneseindrücken und deren mentalen Verarbeitungen, inklusive menschlicher (Alltags-)Logik, entspringen. Dies ist zwar ein nicht von allen, auch philosophisch orientierten Mathematikern und Naturwissenschaftlern geteilter Standpunkt, ich beharre jedoch darauf, ohne an dieser Stelle näher darauf einzugehen. Die Abstraktion von „Dingen” ist und war zwar immer sehr weitgehend, vielfach extrem, nicht aber die Abstraktion vom Menschen selbst und von seinem Denken. Die Axiome zum Aufbau der Mathematik wurden stets intuitiv konstruiert! Mit dieser Mathematik, der ich indes selbstredend kein Haar krümmen möchte, lässt sich zwar die Welt, wie wir sie erkennen, messen und interpretieren, bestens und umfassend beschreiben, nicht aber eine Realität, die auch existiert, ohne dass ein Bewusstsein sie beobachtet und mit Eigenschaften belegt. Die Physik einer solchen fundamentalen (als „Steigerung” von apriorischen) Realität kennt keine Axiome und kann nicht mit einer axiomatischen Wissenschaft beschrieben und berechnet werden. Alle Versuche müssen zu Unvollständigkeiten, Irrealitäten und/oder Kontrafaktizitäten führen.Nach meiner Meinung brauchen wir also, um unsere epistemologischen Bemühungen erfolgversprechend weiter zu betreiben, eine andere Mathematik, eine zurechtgestutzte, von Axiomen befreite, aber gleichzeitig auch eine erweiterte, Dynamik enthaltende. Statik kommt in der Quanten-Realität - sprich: in der Natur - nicht vor, also darf eine fundamentale Mathematik Statik nicht beschreiben können, sondern muss „beschränkt” sein auf dynamisch ablaufende „Prozesse”. Diese andere Mathematik soll die überaus bewährte keinesfalls ersetzen oder obsolet machen, sondern nur zusätzlich (und ausschließlich!) die Sicht auf eine, bisher vollkommen unbehandelte (und ohne quantum computing kaum berechenbare), „allumfassende Dynamik” ermöglichen und auf eine fundamentale Realität hinweisen, in der alles existierende mit allem existierenden dynamisch verknüpft („verschränkt”) ist, in der es kein „Außerhalb” gibt, in der „Ruhezustand” und isolierte „Objekte” nicht vorkommen, genauso wenig wie „infinitesimal klein” oder „unendlich groß”, zumindest nicht in gewohnter Definition. Dieser Blick ist - ansatzweise - möglich: dynamische Koordinaten in symbolischer Darstellung, zur Verdeutlichung allegorisch in den 3D-Raum (den es in der fundamentalen Realität gar nicht gibt) projiziert, und fundamentale „Entitäten” habe ich schon angesprochen. Sie sind nur ein Vorschlag. Vielleicht hat ja jemand eine bessere Idee ... ( let me know ;-) ↑ in English: horn torus mathematical universe |